(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(++(z0, z1), z2) → ++(z0, ++(z1, z2))
Tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
S tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
K tuples:none
Defined Rule Symbols:
++
Defined Pair Symbols:
++'
Compound Symbols:
c2, c3
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
++'(.(z0, z1), z2) → c2(++'(z1, z2))
We considered the (Usable) Rules:
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(++(z0, z1), z2) → ++(z0, ++(z1, z2))
++(nil, z0) → z0
And the Tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(++(x1, x2)) = [4] + [2]x1 + [4]x2
POL(++'(x1, x2)) = [4] + [2]x1
POL(.(x1, x2)) = [4] + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(nil) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(++(z0, z1), z2) → ++(z0, ++(z1, z2))
Tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
S tuples:
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
K tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
Defined Rule Symbols:
++
Defined Pair Symbols:
++'
Compound Symbols:
c2, c3
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
We considered the (Usable) Rules:
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(++(z0, z1), z2) → ++(z0, ++(z1, z2))
++(nil, z0) → z0
And the Tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(++(x1, x2)) = [4] + x1 + [2]x2
POL(++'(x1, x2)) = [5] + [4]x1
POL(.(x1, x2)) = [3] + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(nil) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(++(z0, z1), z2) → ++(z0, ++(z1, z2))
Tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
S tuples:none
K tuples:
++'(.(z0, z1), z2) → c2(++'(z1, z2))
++'(++(z0, z1), z2) → c3(++'(z0, ++(z1, z2)), ++'(z1, z2))
Defined Rule Symbols:
++
Defined Pair Symbols:
++'
Compound Symbols:
c2, c3
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))